
Efficient Incremental Modelling and Solving

Gökberk Koçak, Özgür Akgün, Nguyen Dang, Ian Miguel

School of Computer Science, University of St Andrews, UK
{gk34,ozgur.akgun,nttd,ijm}@st-andrews.ac.uk

Abstract. In various scenarios, a single phase of modelling and solving is either
not sufficient or not feasible to solve the problem at hand. A standard approach to
solving AI planning problems, for example, is to incrementally extend the plan-
ning horizon and solve the problem of trying to find a plan of a particular length.
Indeed, any optimization problem can be solved as a sequence of decision prob-
lems in which the objective value is incrementally updated. Another example is
constraint dominance programming (CDP), in which search is organized into a
sequence of levels. The contribution of this work is to enable a native interaction
between SAT solvers and the automated modelling system SAVILE ROW to sup-
port efficient incremental modelling and solving. This allows adding new decision
variables, posting new constraints and removing existing constraints (via assump-
tions) between incremental steps. Two additional benefits of the native coupling
of modelling and solving are the ability to retain learned information between
SAT solver calls and to enable SAT assumptions, further improving flexibility
and efficiency. Experiments on one optimisation problem and five pattern mining
tasks demonstrate that the native interaction between the modelling system and
SAT solver consistently improves performance significantly.

Keywords: Constraint Programming · Constraint Modelling · Incremental Solv-
ing · Constraint Optimization · Planning · Data Mining · Itemset Mining · Pattern
Mining · Dominance Programming

1 Introduction

When approaching the solution of a class of problems, in many cases a simple single-
phase approach works well: formulate a model parameterised on the data that defines
an individual instance of the problem class, and solve each instance in a single solving
phase. In some scenarios however, as we will illustrate below, this approach is either not
sufficient or not feasible to solve the problem at hand. Instead, a larger or more difficult
problem instance is solved as a sequence of smaller or simpler related instances. In
this situation, communication between a modelling system that prepares an instance for
solution for a low-level solver and the solver itself can become a bottleneck, with much
work repeated between consecutive, very similar instances.

Incremental modelling and solving is a process of constructing an initial low level
instance and obtaining further instances in a sequence by modelling and encoding just
the differences between the previous and the new instance. Most SAT solvers are ca-
pable of working incrementally by allowing to append new irrevocable clauses or set
certain assumptions that are temporary to each call.

2 G Koçak et al.

To illustrate, consider the task of pattern mining, the process of extracting useful pat-
terns from large data sets. The most well-known pattern mining task, frequent itemset
mining [1], requires us to find the sets of items whose number of occurrences together
(known as the support) in a transactional database exceeds a specified threshold. Spe-
cialised, efficient tools exist for standard pattern mining tasks [26]. However, finding
all frequent patterns is rarely useful since it usually produces a very large volume of
results. Rather, an end-user is typically interested in focusing on a much smaller set of
patterns for further inspection. One approach is to seek patterns that compactly repre-
sent the full set of patterns [23], another is to consider domain-specific side constraints
[4] that further reduce the volume of patterns returned. Both methods require a more
sophisticated search for patterns and hence carry an increase in computational cost.

Constraint-based mining [8] offers a general means of modelling more sophisticated
pattern mining tasks. Its flexibility means that side constraints can easily be added to
the basic model of a pattern mining problem, which is difficult to do with a specialised
mining tool. We distinguish local and non-local constraints in modelling pattern mining
problems. The former, such as the frequent itemset property, can be expressed simply on
a candidate solution, e.g. by constraining the support of a candidate itemset to be equal
to or greater than the threshold. Non-local constraints, however, must be expressed be-
tween candidate solutions and are therefore more challenging to model. Closed frequent
itemset mining [23,13], which is one approach to representing the full set of frequent
itemsets more compactly, is an illustrative example: it stipulates that an itemset is closed
frequent if its support exceeds that of all of its supersets.

Constraint Dominance Programming (CDP) [19] provides a method of supporting
constraints between solutions via dominance blocking constraints: every time a new
solution is found, a new blocking constraint is added to disallow solutions that it would
dominate. An extension to CDP, CDP+I [11,12] exploits incomparability between so-
lutions (solutions A and B are incomparable if A does not dominate B and B does not
dominate A) so that they may be found in batches. The search is organized into levels
in which all solutions are incomparable, and hence may be found together through a
single call to a solver without the need for additional per-solution blocking constraints.
Operating on CDP, which requires posting new constraints after each solution, and op-
erating on CDP+I, which has requirements similar to CDP’s but for a batch of solutions,
are incremental modelling and solving examples.

Other problem types that might be considered for incrementality are constrained
optimisation problems (COP), where an objective function is given in addition to a
standard constraint satisfaction problem, or AI planning problems where we can incre-
mentally extend the planning horizon and solve the problem of trying to find a plan of
a particular length.

CP solvers like MINION [9] or chuffed [7] are typically capable of supporting COP
directly in addition to CSP. However other solver types, such as standard SAT solvers,
sometimes lack the facility to represent objective values. Instead of using standard SAT
encoding for the problem, a maximal satisfiability problem encoding (MaxSAT) can
be used to represent the objective function. However, converting a SAT encoding to a
MaxSAT encoding may be time consuming depending on the size of the instance.

Efficient Incremental Modelling and Solving 3

Alternatively, using SAT or SMT solvers is possible for optimisation and planning
problems via a sequence of solver calls in an incremental structure. The COP can be
encoded as a pair of CSP’s with a different optimisation value encoded into each CSP.
Afterwards, those CSP instances can be solved for satisfiability. The threshold where
the problem switches from SAT to UNSAT or the other way around can indicate the
proven optimal value for the original COP instance. Searching for this threshold will
have multiple solver calls that can be adjusted for efficiency.

Contribution This paper proposes to enable a native interaction between the SAT
solver and the automated modelling system that organizes the CDP+I mining process
and the optimization process using a SAT backend. This is done to remove a major bot-
tleneck in which the consecutive SAT calls are operated. Two additional benefits of this
native coupling are the ability to retain learned information between SAT solver calls
and to enable SAT assumptions, further improving efficiency by reducing redundant
search between levels.

Our experiments on one optimization problem and five pattern mining tasks demon-
strate that the native interaction between the modelling system and SAT solver consis-
tently improves the performance of each system significantly.

2 Background

2.1 CDP+I Architecture

ESSENCE [2] is an abstract high-level constraint specification language. It has the power
to represent complex abstract structures, such as sets, multisets, sequences, and parti-
tions. It supports arbitrary nesting of these structures and also supports quantification
over decision variables. Hence, the language is ideally suited to expressing data mining
problems. ESSENCE can be refined into a constraint model in ESSENCE PRIME [21]
using CONJURE [2]. Due to the high-level abstract nature of the specification, there are
multiple ways of compiling ESSENCE to ESSENCE PRIME. CONJURE has a number of
built in heuristics to make modelling decisions automatically. Alternatively, the mod-
elling decisions can be manually selected. SAVILE ROW translates ESSENCE PRIME
into input suitable for a variety of black-box solvers while applying solver specific
optimisations to the model, such as rewriting constraint expressions, common sub-
expression elimination and using MINION to enforce strong levels of consistency in
a preprocessing step [22].

A constraint satisfaction problem consists of decision variables (V), their domains
(D) and problem constraints (C). CDP extends constraint satisfaction problems (CSP)
by adding a dominance relation (R), which defines the condition under which an as-
signment to the decision variables is dominated by another assignment. In CDP, an
assignment is a solution if it is not dominated by any other solution. When enumerat-
ing all solutions of a CDP instance, dominance blocking constraints can be generated
for each solution as soon as they are found. These constraints will eliminate all fu-
ture dominated assignments. However, a post-processing step may still be needed [19].

4 G Koçak et al.

language Essence 1.3

letting ITEM be domain int(...)

letting SUPPORT be domain int(...)

given db : mset of set of ITEM

given minSupport : int

find itemset: set of ITEM

find support: SUPPORT

such that

support = sum entry in db . toInt(itemset subsetEq entry),

support >= minSupport,

SideConstraints

dominanceRelation

(itemset subsetEq fromSolution(itemset))

-> (support != fromSolution(support))

incomparabilityFunction descending |itemset|

Fig. 1: Closed Frequent Itemset Mining in ESSENCE. The dominance relation defines the

closedness property between the currently sought solution and the previous solutions via

fromSolution. The incomparability function is defined on cardinality using a descending

order, since closedness is defined by a superset relation.

CDP+I extends CDP by defining an incomparability function (I), which defines when
two assignments are incomparable (mutually non-dominating).

An itemset mining problem can be specified naturally in ESSENCE as a multiset
of transactions. Depending on the nature of the mining task, each transaction can be
represented using a set of integer item labels or ornamented (using tuples or records)
with additional information such as a class label. Figure 1 presents the specification of
the Closed Frequent Itemset Mining problem in three parts. The first part is the declara-
tion of the parameters, the decision variables and any constraints that concern a single
solution. The second part gives the dominance relation in terms of previously found
solutions. The third part defines the incomparability function, which in this problem is
any two solutions that have the same itemset cardinality.

Algorithm 1 makes use of both the dominance relation and the incomparability
function when solving CDP+I instances. The CDP+I algorithm aims to find all non-
dominated solutions. It achieves this by partitioning the search space into levels ex-
tracted from the incomparability function. For example, for the closed itemset mining
problem, a separate search is conducted for every value in the domain of |itemset|.
For every level, we take the base CSP model and start by adding a level restriction con-

Efficient Incremental Modelling and Solving 5

Algorithm 1 CDP+I
1: (V,D,C,R, I)← CDP+I
2: levels← getLevels(I)
3: for l← levels do
4: C ← C ∪ levelRestriction(l)
5: CSP ← (V,D,C)
6: S ← findAllSolutions(CSP)
7: B ← generateDominanceBlocking(R,S)
8: C ← C − levelRestriction(l)
9: C ← C ∪B

straint to it. In our running example, this corresponds to posting a cardinality constraint
on the itemset. Then, we enumerate all solutions and generate the corresponding dom-
inance blocking constraints. The problem constraints are then updated to remove the
level restriction constraint before adding the new dominance blocking constraints.

Previous implementations of CDP+I made a separate solver call for each level when
using an AllSAT solver and a separate solver call for each solution when using a stan-
dard SAT solver. This allows for a simple implementation of the CDP+I algorithm at the
cost of losing learned clauses between separate solver calls. The performance of mod-
ern SAT solvers relies heavily on learned clauses [16]. Section 4 presents our approach
for enabling native interaction with SAT and AllSAT solvers. Through the use of as-
sumptions in SAT, we achieve improved performance without changing the high-level
problem specifications.

The use of ESSENCE for specifying the problems allows access to a large number of
different models (via CONJURE options), different preprocessing options (via SAVILE
ROW options), and different solvers (SAT and AllSAT).

2.2 Solving COP using SAT solvers

A COP problem can be rewritten as a series of CSP problems where the objective func-
tion value is encoded differently in each of them. A naive but inefficient approach would
be to exhaustively try all possible values and pick the best one which satisfies the in-
stance. Alternatively, we can apply a search for the optimal objective function value
in its domain space. Three different search strategies which are supported by SAVILE
ROW can be considered for this purpose, namely Linear, UNSAT, and Bisect. They are
explained as follows (assuming that we are solving a maximisation problem).

Linear search Linear search is a straightforward search strategy to search for the opti-
mal value. It starts from the lowest value and increase the optimal by one incrementally
until the problem becomes unsatisfiable.

UNSAT search This is also a straightforward strategy which starts from the highest
objective function value and decreases it one by one until the problem becomes satisfi-
able.

6 G Koçak et al.

Bisect search This is a binary search strategy also known as dichotomic search. It
starts with splitting the objective function’s domain into two. This results in two CSP
problems, each with half of split domain. The satisfiable CSP problem is chosen and
the same procedure is repeated until the objective function’s domain size reduce to one
(the optimal objective function value).

3 Problem Classes and Side Constraints

Throughout this paper we will experiment on six problem classes to demonstrate the en-
hancements we will introduce. Five of these problem classes are pattern mining prob-
lems encoded in CDP+I and the instances we use are taken from the supplementary
material of [12]. The sixth problem class is Multi-Mode Resource Constrained Project
Scheduling Problem (MRCPSP).

The pattern mining problems are variations of the frequent itemset mining problem,
each parameterised over a dataset of transactions. The task is to find a set of frequent
items that satisfy minimum value and maximum cost side constraints. In addition, each
problem class has a different constraint among assignments which encodes the domi-
nance relationship.

Closed frequent itemset mining (CFIS) A frequent itemset is closed if and only if its
support is greater than all of its supersets [23]. The support of an itemset is the number
of times the set occurs together in the transactions database. Maximal itemset mining is
a similar problem class where the only difference is that a frequent itemset is maximal
if none of its supersets are frequent. We do not include maximal itemset mining in our
experiments since it is a simpler version of closed itemset mining.

Generator frequent itemset mining (GFIS) Generator itemsets (also called free item-
sets or key itemsets) [5] are frequent itemsets which do not have any frequent subsets
with the same support.

Minimal rare itemset mining (MRIM) A minimal rare itemset is an infrequent item-
set whose subsets are all frequent [25].

Closed discriminative itemset mining (DFIS) Discriminative itemset mining [6] is
parameterised over a dataset of transactions that also have a class label (positive/neg-
ative). Instead of a single support value, we maintain two support values: the positive
support of an itemset is the number of transactions that are labelled positive and have
the itemset as a subset. The negative support similarly is the number of transactions
that are labelled negative and have the itemset as a subset. A discriminative itemset is
one where the difference between the positive and the negative support is greater than
a given threshold. A closed discriminative itemset is a discriminative itemset that has
support greater than all of its supersets.

Efficient Incremental Modelling and Solving 7

Relevant subgroup discovery (RSD) Relevant subgroup discovery [15] is similar to
discriminative itemset mining. While discriminative itemset mining reasons on the sup-
port numbers of different classes of transactions, relevant subgroup discovery reasons
using the actual sets of transactions that provide the support [19]. A relevant subgroup
X is an itemset where at least one of following conditions hold; 1) For positive trans-
actions, no other itemset covers a superset of the transactions covered by X , 2) For
negative transactions, no other itemset covers a subset of the transactions covered by X
or 3) For both kinds of transactions, no other itemset that has the same total cover is a
superset of X .

Multi-mode resource constrained project scheduling problem (MRCPSP) This is a
variant of the project scheduling problem [14], a classical and well-known optimisation
problem in operations research. Given a number of activities and a set of renewable
resources. Each activity is associated with a duration and demands for some resources.
The activites are non-interrupted and there are precedence constraints which states that
some activities can only start once some others are finished. The variant considered in
this paper is the multi-mode [18], where each activity may have multple modes. Each
mode dictates the duration and resource demands of the activity. The goal is to schedule
the activities and choose a mode for each of them so that the makespan (the latest
completion time) is minimised. An ESSENCE specification of this problem is presented
in Appendix A (Figure 7).

4 Native Interaction

The main CDP+I algorithm (Algorithm 1) and the SAT optimisation backend requires
multiple solver calls. For CDP+I, each solver calls occur once per level when using
an AllSAT solver and once per solution when using a standard SAT solver. Solutions
from a level are used to produce dominance blocking constraints for the next level.
Furthermore, level restriction constraints are both added and removed between levels.
Likewise, for optimisation problems using a standard SAT backend, multiple solver
calls occur to apply three optimization strategies to reach to optimal value. In addi-
tion to adding temporary constraints, the ability to remove added constraints is also
required. Adding constraints during search is relatively common even without an incre-
mental process. However, removing constraints requires special treatment by the solver
in question. A direct implementation of these algorithms would indeed call the solver
several times and consequently would not benefit from any learned clauses between
solver calls.

There are two main ways of maintaining learned clauses between solver calls. The
first option works by extracting learned clauses once the solver finishes the search and
post-processing them to keep a relevant subset for a future solver invocation. [24] uses
a similar approach to learn candidate implied constraints from a learning solver. The
second option works by keeping the solver active, modifying the active model by post-
ing additional constraints and restarting search. Adding new variables and constraints
in this way is a relatively common operation, available in ipasir, an incrementality
API for SAT solvers used in SAT competitions [10]. Removing constraints requires the

8 G Koçak et al.

assumptions machinery that is available in most modern SAT solvers. Constraints that
are going to be removed are posted as conditional new clauses dependent on an assump-
tion. Hence, when the assumption is lifted (and the constraint is removed) any learned
clauses which depend on that assumption can be deactivated.

We define a new API for SAT solvers that shares most of the functionality of
ipasir, including methods for adding new clauses, adding assumptions, solving and
retrieving solutions. We extend this basic API to also include methods for reporting
detailed statistics about learned clauses and the solver’s state, in addition to triggering
solution callbacks. Our extended API is implemented using the Rust programming lan-
guage. It works with SAT solvers GLUCOSE, CADICAL and MINISAT and the AllSAT
solver NBC MINISAT ALL. Our Rust implementation encapsulates the required func-
tionality of these solvers and compiles them into a shared library.

The entire pipeline of tools starts with CONJURE, which produces an ESSENCE
PRIME model for each problem class. A modified SAVILE ROW is then used to instan-
tiate the problem class model using a given data file, preprocessing it using MINION
to shave domains, and then encoding into SAT using the standard encodings found in
SAVILE ROW [20]. Prior to our work, SAVILE ROW worked by producing a DIMACS
file that has the entire encoding in it and calling a SAT solver on this file. Thanks to
the new API we define and implement, SAVILE ROW now skips building this file and
directly makes calls to the SAT solver to create the model.

Our solver API layer is implemented in Rust while SAVILE ROW was implemented
in Java. We use the Java Native Interface (JNI) to integrate the API layer into SAVILE
ROW.

5 Experiments

5.1 MRCPSP experiments

To demonstrate the effectiveness of keeping SAT learnt clauses between levels during
the optimisation process using native interaction, we evaluate the three optimisation
strategies explained in Section 2.2 on 928 MRCPSP instances from the PSPlib [14]. The
SAT solver GLUCOSE [3] is combined with each of the three optimisation strategies. We
also compare the the resulting performance with Open-WBO [17], a MaxSAT solver
and with Chuffed [7], a learning CP solver.

Each run on an instance is given a time limit of one CPU hour, and is repeated three
times. The average solving time is recorded. The comparison of the usage of native in-
teraction on GLUCOSE is shown in Figure 2. Results suggest that for all three strategies,
the native interaction boosts the efficiency significantly on all tested instances.

Comparison against Open-WBO and Chuffed are plotted in Figure 3. While in the
first figure only includes the default SAT strategies, the second figure replaces them
with their native equivalents. Results suggest that the native interaction create a drastic
performance improvement for the SAT backend GLUCOSE and results on these problem
instances are competitive against the two established optimisation solvers.

Efficient Incremental Modelling and Solving 9

0.2 1.0 10.0 40.0 150.0
Without native interaction

0.2

1.0

10.0

40.0

150.0

W
ith

 n
at

iv
e

in
te

ra
ct

io
n

glucose-bisect

0.2 1.0 10.0 40.0 150.0
Without native interaction

0.2

1.0

10.0

40.0

150.0

W
ith

 n
at

iv
e

in
te

ra
ct

io
n

glucose-linear

0.2 1.0 10.0 40.0 150.0
Without native interaction

0.2

1.0

10.0

40.0

150.0

W
ith

 n
at

iv
e

in
te

ra
ct

io
n

glucose-UNSAT

Fig. 2: Solving time of GLUCOSE with versus without native interaction on 928 MRCPSP in-
stances.

Instances0.2

1.0

10.0

50.0

150.0

Ti
m

e
(s

)

glucose-bisect
glucose-linear
glucose-UNSAT
Open-WBO
Chuffed

(a) Without native interaction

Instances0.2

1.0

10.0

50.0

150.0

Ti
m

e
(s

)

glucose-bisect
glucose-linear
glucose-UNSAT
Open-WBO
Chuffed

(b) With native interaction

Fig. 3: Solving time of GLUCOSE with three settings (bisect, linear and UNSAT), Open-WBO
and Chuffed on 928 MRCPSP instances. GLUCOSE’s results are shown without (top) and with
(bottom) native interaction.

5.2 CDP+I experiments

Computational Evaluation with a Standard SAT Solver In order to evaluate the ef-
fectiveness of maintaining learned clauses and using SAT assumptions between CDP+I

10 G Koçak et al.

levels, we solve 240 instances across 5 problem classes (see Section 3). Within a 6-hour
time limit, the native version solves 210 instances whereas pure CDP+I solves only 173
instances. We believe this is due to needing fewer search nodes, which is made possible
by pruning large parts of the search tree via the learned clauses.

Figure 4 presents the median number of search nodes per level. Since instances have
different numbers of levels, we normalise the number of levels on the horizontal axis.
The plot also shows that the default CDP+I’s performance can vary amongst different
instances, while CDP+I-native’s performance has more stability, indicating that CDP+I-
native is more robust.

Normalized Levels
0

5000

10000

So
lv

er
 n

od
es

(a) CFIS

Normalized Levels
0

5000

10000

So
lv

er
 n

od
es

 CDP+I
 CDP+I native

(b) GFIS

Normalized Levels
0

5000

10000

15000

So
lv

er
 n

od
es

(c) MRIM

Normalized Levels
0

2000

So
lv

er
 n

od
es

(d) DFIM

Normalized Levels
0

1000

2000

So
lv

er
 n

od
es

(e) RSD

Normalized Levels
0

2000

4000

So
lv

er
 n

od
es

(f) All problem classes

Fig. 4: Median solver nodes per CDP+I level. Error bars range between the 45th and the 55th

percentile. Horizontal axis represents normalised levels between instances. Native CDP+I uses
significantly fewer search nodes, thanks to accumulated learned clauses between levels.

CDP+I-native uses fewer search nodes than pure CDP+I, due to maintaining a sub-
set of learned clauses between levels. Figure 6a presents a comparison of total solver
run time of the two CDP+I variants on NBC MINISAT ALL and shows that native in-
teraction clearly results in faster run times as well. On PAR2 average, CDP+I-native
spends 493 seconds per instance whereas pure CDP+I spends 8,210 seconds.

Efficient Incremental Modelling and Solving 11

A Case Study on CFIS Tumor 20% instance To evaluate whether keeping learned
clauses improves efficiency, we will demonstrate this by examining one particular in-
stance in detail as a case study.

Figure 5 presents two plots. The first shows that CDP+I-native uses fewer search
nodes on each level. The second illustrates the increased number of SAT clauses in
each level that result from keeping learnt clauses. The improved efficiency seen on the
first plot is a direct result of the restricted search space from having more clauses.

Levels
0

2000

4000

6000

8000

So
lv

er
 n

od
es

CDP+I
 CDP+I-native

Levels110000

112500

115000

117500

120000

122500

125000

127500

130000

Nu
m

be
r o

f S
AT

 C
la

us
es

Fig. 5: A comparison on one CDP+I instance with and without native interaction using
NBC MINISAT ALL AllSAT solver. The example instance is CFIS Tumor with 20% frequency.
Each plot is averaged out from a single model and multiple random seeds. The plot on the left
shows the number of solver nodes on each level, while the plot on the right shows the total number
of SAT clauses on each level.

Computational Evaluation with a Standard SAT Solver CDP+I on a standard SAT
solver operates by generating solution blocking clauses between each solver call in a
level. Once a level is completed, the dominance blocking clauses generated by SAVILE
ROW are encoded and passed on to the next level. The solution blocking clauses are not
encoded again since they are redundant and already implied in the dominance blocking
constraints.

Implementing a native interactive system on a standard SAT solver will bring both
costs and benefits to its performance. AllSAT solvers are already capable of keeping
learned information in a level due to their all solution enumeration behaviour. The native
interaction will grant the standard SAT solver this capability, in addition to making the
learned information persistent between levels. Thus, the increase of the standard SAT
solver’s performance will be relatively much higher than the increase of the AllSAT
solver’s performance. However, since we will still be using solution blocking clauses in
a level and since the system cannot eliminate the redundant solution blocking clauses
once the level is done, the standard SAT model might expand far beyond its non-native
equivalent. AllSAT solvers are not susceptible to this because they can operate without
the use of solution blocking clauses, regardless of whether they use native interaction.

12 G Koçak et al.

10 1 100 101 102 103 104

CDP+I-native NBC

10 1

100

101

102

103

104

CD
P+

I N
BC

(a) Comparing total solver time using the AllSAT solver
NBC MINISAT ALL.

10 1 100 101 102 103 104

CDP+I-native Glucose

10 1

100

101

102

103

104

CD
P+

I G
lu

co
se

(b) Comparing total solver time using the standard SAT solver
GLUCOSE.

Fig. 6: Comparison plot between pure CDP+I and CDP+I-native. The time limit is 6 hours per
instance. Each data point is averaged out from a single model and multiple random seeds.

Figure 6b illustrates a comparison of CDP+I with and without native interaction
using the standard SAT solver GLUCOSE. Native interaction increases the performance
amongst all instances significantly. The results also suggest that the anticipated decrease
in performance due to the expansion of the model did not outweigh the increase pro-
vided by native interaction.

In this section we have evaluated the effect of native interaction on the performance
of CDP+I. We conducted our analysis on an AllSAT solver and a standard SAT solver.
In the next section we evaluate the configuration space of CDP+I-native.

6 Conclusion

We have proposed and implemented a new native interaction component to bridge the
gap between low level SAT solving and higher level model compilation in SAVILE
ROW. We integrated this component into SAVILE ROW to be able to use in the CDP+I
framework and optimization problems. Our experiments on different pattern mining
tasks and an optimization problem (MRCPSP) show that the native component boosted
solving performance significantly. This interaction enabled accessing SAT assumptions
to encode level information in a transparent way and also made learned information
persistent across multiple runs.

Future work includes evaluating the native interaction component with different
problem classes. We believe this native interaction can be a viable option for multi ob-
jective optimization tasks as well. Additionally, there is a large space of possible con-
figurable options which is yet to cover, including different modelling and reformulation
methods, other SAT solvers and SMT solvers.

Efficient Incremental Modelling and Solving 13

Acknowledgements This work is supported by EPSRC grant EP/P015638/1. Nguyen
Dang is a Leverhulme Trust Early Career Fellow (ECF-2020-168).

References

1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: 20th int.
conf. very large data bases, VLDB. vol. 1215, pp. 487–499 (1994)

2. Akgün, Ö., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, I.,
Nightingale, P.: Automated symmetry breaking and model selection in conjure. In: Inter-
national Conference on Principles and Practice of Constraint Programming. pp. 107–116.
Springer (2013)

3. Audemard, G., Simon, L.: On the glucose sat solver. International Journal on Artificial Intel-
ligence Tools 27(01), 1840001 (2018)

4. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Fourth IEEE
International Conference on Data Mining (ICDM’04). pp. 35–42. IEEE (2004)

5. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Approximation of frequency queries by means of
free-sets. In: European Conference on Principles of Data Mining and Knowledge Discovery.
pp. 75–85. Springer (2000)

6. Cheng, H., Yan, X., Han, J., Hsu, C.W.: Discriminative frequent pattern analysis for effective
classification. In: 2007 IEEE 23rd International Conference on Data Engineering. pp. 716–
725. IEEE (2007)

7. Chu, G., Stuckey, P.J.: Chuffed solver description, 2014
8. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: SIGKDD

international conference on Knowledge discovery and data mining. pp. 204–212. ACM
(2008)

9. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: ECAI.
vol. 141, pp. 98–102 (2006)

10. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international sat solver competitions.
Ai Magazine 33(1), 89–92 (2012)

11. Koçak, G., Akgün, Ö., Guns, T., Miguel, I.: Towards improving solution dominance with
incomparability conditions: A case-study using generator itemset mining. arXiv preprint
arXiv:1910.00505 (2019)

12. Koçak, G., Akgün, Ö., Guns, T., Miguel, I.: Exploiting incomparability in solution domi-
nance: Improving general purpose constraint-based mining. In: ECAI (2020)

13. Koçak, G., Akgün, Ö., Miguel, I., Nightingale, P.: Closed frequent itemset mining with ar-
bitrary side constraints. In: 2018 IEEE International Conference on Data Mining Workshops
(ICDMW). pp. 1224–1232. IEEE (2018)

14. Kolisch, R., Sprecher, A.: Psplib-a project scheduling problem library: Or software-orsep
operations research software exchange program. European journal of operational research
96(1), 205–216 (1997)

15. Lemmerich, F., Rohlfs, M., Atzmueller, M.: Fast discovery of relevant subgroup patterns. In:
Twenty-Third International FLAIRS Conference (2010)

16. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers. In: Hand-
book of satisfiability, pp. 131–153. ios Press (2009)

17. Martins, R., Manquinho, V., Lynce, I.: Open-wbo: A modular maxsat solver. In: International
Conference on Theory and Applications of Satisfiability Testing. pp. 438–445. Springer
(2014)

18. Mori, M., Tseng, C.C.: A genetic algorithm for multi-mode resource constrained project
scheduling problem. European Journal of Operational Research 100(1), 134–141 (1997)

14 G Koçak et al.

19. Negrevergne, B., Dries, A., Guns, T., Nijssen, S.: Dominance programming for itemset min-
ing. In: 2013 IEEE 13th International Conference on Data Mining. pp. 557–566. IEEE (2013)

20. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.: Automatically
improving constraint models in savile row. Artificial Intelligence 251, 35–61 (2017)

21. Nightingale, P., Rendl, A.: Essence’ description (2016), arXiv:1601.02865 [cs.AI]
22. Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving sat encoding of constraint

problems through common subexpression elimination in savile row. In: International Confer-
ence on Principles and Practice of Constraint Programming. pp. 330–340. Springer (2015)

23. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for
association rules. In: International Conference on Database Theory. pp. 398–416. Springer
(1999)

24. Shishmarev, M., Mears, C., Tack, G., de la Banda, M.G.: Learning from learning solvers. In:
International conference on principles and practice of constraint programming. pp. 455–472.
Springer (2016)

25. Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: 19th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI 2007). vol. 1, pp. 305–312.
IEEE (2007)

26. Zaki, M.J.: Scalable algorithms for association mining. IEEE transactions on knowledge and
data engineering 12(3), 372–390 (2000)

Efficient Incremental Modelling and Solving 15

A Essence specification for MRCPSP

language Essence 1.3

given nonRenewableResources new type enum

given renewableResources new type enum

given jobs new type enum

given startDummy, endDummy : jobs

given modes new type enum

given renewableLimits: function (total) renewableResources --> int

given nonRenewableLimits : function (total) nonRenewableResources --> int

given successors : function (total) jobs --> set of jobs

given renewableResourceUsage :

function (jobs, modes, renewableResources) --> int

given nonRenewableResourceUsage :

function (jobs, modes, nonRenewableResources) --> int

given duration : function (jobs,modes) --> int

given horizon : int

letting timesRange be domain int(1..horizon)

find start: function (total) jobs --> timesRange

find mode: function (total) jobs --> modes

find jobActive: function (total) (jobs,timesRange) --> bool

such that

forAll job : jobs .

forAll jobSuccessor in successors(job) .

start(jobSuccessor) >= start(job) + duration((job,mode(job)))

such that

forAll job : jobs .

forAll time : timesRange .

jobActive((job,time)) <->(

time >= start(job) /\ time < start(job) + duration((job,mode(job)))

)

such that

forAll resource : nonRenewableResources .

sum([nonRenewableResourceUsage((job, mode(job), resource))| job : jobs])

<= nonRenewableLimits(resource)

such that

forAll resource : renewableResources .

forAll time : timesRange .

sum([renewableResourceUsage((job,mode(job),resource)) |

job : jobs, jobActive((job,time))])

<= renewableLimits(resource)

such that

start(startDummy)=1

minimising start(endDummy)

Fig. 7: Essence specificaton for MRCPSP

	Efficient Incremental Modelling and Solving

